Skip to main content

Prerequisites

Before exploring bin architecture, you should understand:

Key Technical Concepts

This deep dive covers:
  • Discrete bin implementation: A+B=C formula vs traditional x×y=k
  • Active bin system: Single active bin processing with zero slippage
  • Bin array optimization: Efficient on-chain storage and gas costs
  • Price traversal algorithms: Multi-bin swap routing and liquidity aggregation

How DLMM Achieves Zero-Slippage Trading

Traditional AMM Problem: Every swap impacts price due to x×y=k curve mechanics, creating slippage even for small trades. DLMM Solution: Discrete price bins use A+B=C formula within each bin, enabling zero-slippage swaps until bin liquidity is exhausted. DLMM active bin system showing how only one bin processes trades at a time with zero slippage The active bin system perfectly illustrates how DLMM achieves zero slippage - only one bin is active at any time, processing all trades at fixed price

Fundamental Architecture Principles

From Continuous Curves to Discrete Bins

Traditional AMM Architecture (x×y=k):
Price Range: [0 ────────────────────────────── ∞]
Liquidity:   [═══════════════════════════════════]
Usage:       [    unused    ][0.5%][    unused    ]

                     Current Price
Formula:     x × y = k (continuous curve)
Slippage:    Every trade impacts price
DLMM Bin Architecture (A+B=C per bin):
Bins:        [empty][BIN₁][BIN₂][BIN₃][empty]
Price:       [$95 ][$97 ][$99 ][$101][$103]
Liquidity:   [ 0% ][35% ][40% ][25% ][ 0% ]

                  Active Bin ($99)
Formula:     A + B = C (within each bin)
Slippage:    Zero within bins, only between bins
Key Innovation: DLMM replaces the continuous x×y=k curve with discrete bins using A+B=C formula, enabling zero-slippage trades within each bin while concentrating capital where actual trading occurs.

The Active Bin System

Critical DLMM Innovation: Single Active Bin

Key Insight: Unlike traditional AMMs where all liquidity is always available, DLMM has only one active bin at any time. Active Bin Characteristics:
  • Only the active bin earns trading fees
  • Contains both Token A and Token B
  • Processes all swaps with zero slippage
  • Shifts when liquidity is exhausted
Inactive Bins:
  • Above current price: Contain only Token A
  • Below current price: Contain only Token B
  • Earn no fees until price reaches them

Active Bin Mechanics

// Active Bin Example: SOL/USDC at $100
const activeBin = {
  price: 100,
  solReserves: 500,  // Token A
  usdcReserves: 50000, // Token B  
  status: 'active',
  feesEarned: 0
};

const inactiveBinAbove = {
  price: 105,
  solReserves: 1000,  // Only Token A (for when price rises)
  usdcReserves: 0,    // No USDC
  status: 'inactive'
};

const inactiveBinBelow = {
  price: 95,
  solReserves: 0,     // No SOL  
  usdcReserves: 10000, // Only Token B (for when price falls)
  status: 'inactive'
};

Bin Structure and Organization

Individual Bin Components

Each bin contains discrete price range liquidity
  • Price Point: Single discrete price (not a range)
  • Liquidity Reserves: Token A and Token B quantities using A+B=C formula
  • Active Status: Only one bin is active at any time
  • Fee Accumulator: Trading fees earned when bin is active
  • Zero Slippage: Swaps within bin execute at fixed price

Bin Array Architecture

Efficient on-chain storage and retrieval system
  • Packed Storage: Multiple bins stored in single accounts
  • Lazy Initialization: Bins created only when needed
  • Efficient Queries: Batch retrieval reduces RPC overhead
  • Memory Optimization: Minimal on-chain storage requirements
  • Gas Efficiency: Optimized for Solana’s compute model

Zero-Slippage Mechanism

How Zero-Slippage Works

Traditional AMM Slippage:
// Traditional constant product formula: x * y = k
// Large trades cause exponential price impact
const getAmountOut = (amountIn: number, reserveIn: number, reserveOut: number) => {
  const amountInWithFee = amountIn * 997; // 0.3% fee
  const numerator = amountInWithFee * reserveOut;
  const denominator = (reserveIn * 1000) + amountInWithFee;
  return numerator / denominator; // Price impact increases exponentially
};

// Example: $10K swap on $1M pool = ~1% slippage
// Example: $100K swap on $1M pool = ~9.1% slippage
DLMM Zero-Slippage Implementation:
// DLMM active bin uses A+B=C formula (not x*y=k)
const executeSwapInActiveBin = (
  amountIn: number, 
  activeBin: Bin,
  tokenIn: 'A' | 'B'
) => {
  const availableLiquidity = tokenIn === 'A' 
    ? activeBin.tokenAReserves 
    : activeBin.tokenBReserves;
    
  if (amountIn <= availableLiquidity) {
    // Within bin capacity: ZERO slippage execution
    return {
      amountOut: amountIn, // A+B=C maintains fixed exchange
      priceImpact: 0,      // No slippage within bin
      binsTraversed: 1
    };
  } else {
    // Bin exhausted: move to next bin (price change occurs)
    return traverseToNextBin(amountIn, activeBin);
  }
};

// Key: Zero slippage within bins, discrete price steps between bins

Multi-Bin Traversal Logic

Multi-bin traversal logic showing how large swaps move across consecutive price bins Technical explanation of how large swaps traverse multiple bins - this visualizes the multi-bin execution process
1

Single Bin Execution

Trade fits within current bin liquidity
// Perfect execution at bin price
const result = {
  inputAmount: 1000, // USDC
  outputAmount: 1000 * binPrice, // SOL
  priceImpact: 0, // Zero slippage
  bins_traversed: 1
};
Result: Perfect price execution with zero slippage
2

Multi-Bin Execution

Trade exceeds single bin capacity
const executeMultiBinSwap = async (totalAmount: number) => {
  let remainingAmount = totalAmount;
  let totalOutput = 0;
  let currentBin = getActiveBin();
  
  while (remainingAmount > 0) {
    const binCapacity = getBinLiquidity(currentBin);
    const amountInThisBin = Math.min(remainingAmount, binCapacity);
    
    totalOutput += amountInThisBin * getBinPrice(currentBin);
    remainingAmount -= amountInThisBin;
    
    if (remainingAmount > 0) {
      currentBin = getNextBin(currentBin);
    }
  }
  
  return { totalOutput, bins_traversed: currentBin - startBin };
};
Result: Predictable price progression across bins
3

Dynamic Fee Adjustment

Fees adjust based on market conditions and bin utilization
const calculateDynamicFee = (bin: Bin, marketConditions: MarketState) => {
  const baseFee = 0.0005; // 0.05% base
  
  // Volatility adjustment
  const volatilityMultiplier = marketConditions.volatility > 0.1 ? 1.5 : 1.0;
  
  // Utilization adjustment  
  const utilizationMultiplier = bin.utilization > 0.8 ? 1.2 : 1.0;
  
  // Time-based adjustment
  const timeMultiplier = getTimeWeightedMultiplier(bin.lastActivity);
  
  return baseFee * volatilityMultiplier * utilizationMultiplier * timeMultiplier;
};
Result: Optimized fees that balance LP returns and trading costs

Price Discovery and Market Making

Active Bin Management

Current Active Bin Identification:
interface ActiveBinState {
  currentBin: number;           // Bin containing current market price
  reserves: BinReserves;        // X and Y token quantities
  utilization: number;          // Trading activity level (0-1)
  lastTradePrice: number;       // Most recent execution price
  feeAccumulator: BN;          // Accumulated fees for LPs
}

const getActiveBin = async (pair: TradingPair) => {
  // Get the bin that contains the current market price
  const marketPrice = await getOraclePrice(pair);
  const binId = calculateBinFromPrice(marketPrice, pair.binStep);
  return await fetchBinState(binId);
};
Bin Transition Logic:
const handleBinTransition = async (trade: Trade) => {
  const currentBin = await getActiveBin(trade.pair);
  
  if (trade.amount <= currentBin.reserves.available) {
    // Execute within current bin
    return executeSingleBinTrade(trade, currentBin);
  } else {
    // Traverse multiple bins
    const route = await calculateOptimalBinRoute(trade);
    return executeMultiBinTrade(trade, route);
  }
};

const executeMultiBinTrade = async (trade: Trade, route: BinRoute[]) => {
  let totalOutput = new BN(0);
  let remainingInput = trade.amount;
  
  for (const bin of route) {
    const amountInThisBin = BN.min(remainingInput, bin.capacity);
    const binOutput = amountInThisBin.mul(bin.price);
    
    totalOutput = totalOutput.add(binOutput);
    remainingInput = remainingInput.sub(amountInThisBin);
    
    // Update bin state
    await updateBinAfterTrade(bin, amountInThisBin);
    
    if (remainingInput.eq(new BN(0))) break;
  }
  
  return { totalOutput, binsTraversed: route.length };
};

Dynamic Liquidity Concentration

Automatic Liquidity Migration

Liquidity automatically concentrates around active trading ranges
const rebalanceLiquidity = async (pool: DLMMPool) => {
  const tradingActivity = await getRecentTradingData(pool, 24); // 24 hours
  const optimalDistribution = calculateOptimalBinDistribution(tradingActivity);
  
  // Incentivize LPs to migrate to optimal bins
  const incentives = {
    highActivityBins: { bonusApy: 0.25 }, // 25% bonus
    lowActivityBins: { penaltyApy: -0.1 } // 10% penalty
  };
  
  return updateLiquidityIncentives(pool, incentives);
};

Market Making Efficiency

Professional market making through automated bin management
const optimizeMarketMaking = async (position: LPPosition) => {
  const marketData = await analyzeMarketConditions(position.pair);
  
  if (marketData.trend === 'ranging') {
    // Concentrate around current price
    return adjustBinRange(position, { 
      range: 'tight',
      bins: [-2, -1, 0, 1, 2] 
    });
  } else if (marketData.trend === 'trending') {
    // Wider distribution for trending markets
    return adjustBinRange(position, { 
      range: 'wide',
      bins: [-5, -3, -1, 1, 3, 5] 
    });
  }
};

Capital Efficiency Analysis

Efficiency Metrics Comparison

Traditional AMM vs DLMM Capital Utilization:
interface CapitalEfficiencyMetrics {
  totalLiquidity: BN;          // Total capital deployed
  activeLiquidity: BN;         // Capital actually used for trades
  utilizationRate: number;     // activeLiquidity / totalLiquidity
  volumeToTvlRatio: number;   // Daily volume / TVL
  lpYield: number;            // LP returns per unit capital
}

const compareEfficiency = async (pool: Pool): Promise<EfficiencyComparison> => {
  // Traditional AMM simulation
  const traditionalAMM = {
    totalLiquidity: new BN('1000000'), // $1M TVL
    activeLiquidity: new BN('12000'),  // ~1.2% active (typical)
    utilizationRate: 0.012,
    volumeToTvlRatio: 0.3,
    lpYield: 0.15 // 15% APY
  };
  
  // DLMM actual performance
  const dlmmPool = {
    totalLiquidity: new BN('1000000'), // Same $1M TVL
    activeLiquidity: new BN('780000'), // ~78% active
    utilizationRate: 0.78,
    volumeToTvlRatio: 2.4,
    lpYield: 0.42 // 42% APY
  };
  
  return {
    capitalEfficiencyImprovement: dlmmPool.utilizationRate / traditionalAMM.utilizationRate, // 65x
    yieldImprovement: dlmmPool.lpYield / traditionalAMM.lpYield, // 2.8x
    volumeEfficiency: dlmmPool.volumeToTvlRatio / traditionalAMM.volumeToTvlRatio // 8x
  };
};

Real-World Performance Data

Pool Size: 2.3MTVLDailyVolume:2.3M TVL **Daily Volume**: 5.8M averageCapital Utilization:
  • Active liquidity ratio: 73.2%
  • Volume-to-TVL ratio: 2.52x daily
  • Average bins active: 12-15 (out of 50 initialized)
LP Performance:
  • Average LP yield: 38.4% APY
  • Fee capture rate: 94.7% (vs ~23% for traditional AMM)
  • Impermanent loss: -2.1% (vs -3.8% traditional)
Trade Execution:
  • Zero slippage trades: 67.3% (under $10K)
  • Average slippage: 0.12% (vs 0.34% traditional)
  • Failed transactions: 0.8% (network congestion related)
Pool Size: 1.8MTVLDailyVolume:1.8M TVL **Daily Volume**: 3.2M averageCapital Utilization:
  • Active liquidity ratio: 89.6% (higher for stablecoin pairs)
  • Volume-to-TVL ratio: 1.78x daily
  • Average bins active: 8-10 (tight range for stablecoin)
LP Performance:
  • Average LP yield: 22.1% APY
  • Fee capture rate: 97.3% (excellent for stablecoin)
  • Impermanent loss: -0.3% (minimal for stable pairs)
Trade Execution:
  • Zero slippage trades: 89.4% (excellent for stables)
  • Average slippage: 0.04% (vs 0.18% traditional)
  • Failed transactions: 0.4%

Advanced Features and Optimizations

Cross-Pool Arbitrage Integration

interface CrossPoolArbitrage {
  sourceBin: BinState;
  targetBin: BinState;
  arbitrageOpportunity: ArbitrageData;
  profitPotential: BN;
}

const detectArbitrageOpportunities = async (pools: DLMMPool[]): Promise<CrossPoolArbitrage[]> => {
  const opportunities: CrossPoolArbitrage[] = [];
  
  for (const pool1 of pools) {
    for (const pool2 of pools) {
      if (pool1.pair.base === pool2.pair.base || pool1.pair.quote === pool2.pair.quote) {
        const priceDiff = calculatePriceDifference(pool1.activeBin, pool2.activeBin);
        
        if (priceDiff.abs().gt(new BN('500'))) { // 0.05% threshold
          opportunities.push(await calculateArbitrageProfit(pool1, pool2, priceDiff));
        }
      }
    }
  }
  
  return opportunities.sort((a, b) => b.profitPotential.cmp(a.profitPotential));
};

const executeArbitrage = async (opportunity: CrossPoolArbitrage) => {
  const optimalSize = calculateOptimalArbitrageSize(opportunity);
  
  // Execute simultaneous trades
  const [buyResult, sellResult] = await Promise.all([
    executeBinSwap(opportunity.sourceBin, optimalSize.buyAmount),
    executeBinSwap(opportunity.targetBin, optimalSize.sellAmount)
  ]);
  
  // Share profits with LPs
  const lpBonus = opportunity.profitPotential.mul(new BN('30')).div(new BN('100')); // 30%
  await distributeBonusToLPs([opportunity.sourceBin, opportunity.targetBin], lpBonus);
  
  return {
    profit: opportunity.profitPotential.sub(lpBonus),
    lpBonus,
    priceConvergence: calculatePriceConvergence(buyResult, sellResult)
  };
};

MEV Protection and Value Capture

Sandwich Attack Protection

Built-in MEV protection through bin architecture
const detectSandwichAttempt = (pendingTxs: Transaction[]) => {
  const suspiciousPatterns = analyzeTxPatterns(pendingTxs);
  
  if (suspiciousPatterns.frontRunning || suspiciousPatterns.backRunning) {
    // Implement protection mechanisms
    return {
      delayExecution: true,
      adjustBinDistribution: true,
      captureMevValue: true
    };
  }
};

const protectAgainstMev = async (userTx: Transaction) => {
  const mevRisk = assessMevRisk(userTx);
  
  if (mevRisk.high) {
    // Execute through private mempool or delayed execution
    return executeProtectedSwap(userTx, {
      privateMempool: true,
      mevBountyCapture: true
    });
  }
};

Value Redistribution

MEV value captured and shared with users and LPs
const redistributeMevValue = async (capturedMev: BN, affectedParties: Address[]) => {
  const distribution = {
    lpBonus: capturedMev.mul(new BN('40')).div(new BN('100')), // 40%
    userRefund: capturedMev.mul(new BN('30')).div(new BN('100')), // 30%
    protocolTreasury: capturedMev.mul(new BN('20')).div(new BN('100')), // 20%
    developerFund: capturedMev.mul(new BN('10')).div(new BN('100')) // 10%
  };
  
  // Distribute captured MEV value
  await Promise.all([
    distributeBonusToLPs(affectedPools, distribution.lpBonus),
    refundToUser(affectedUser, distribution.userRefund),
    transferToTreasury(distribution.protocolTreasury)
  ]);
};

Technical Implementation Details

On-Chain Storage Optimization

DLMM bin array storage structure showing lazy initialization and batch retrieval optimization Technical deep dive into how bins are stored efficiently on-chain - lazy initialization and batch retrieval reduce gas costs
// Efficient bin storage using Solana account packing
interface BinArrayAccount {
  version: number;                // Protocol version
  bumpSeed: number;              // PDA bump seed
  index: BN;                     // Array index
  lbPair: PublicKey;            // Associated pair
  bins: Bin[];                  // Up to 70 bins per account
}

interface Bin {
  amountX: BN;                  // Token X reserves (64 bits)
  amountY: BN;                  // Token Y reserves (64 bits)
  price: BN;                    // Bin price (64 bits)
  liquiditySupply: BN;          // LP token supply (64 bits)
  feeInfoX: FeeInfo;           // X token fee tracking (128 bits)
  feeInfoY: FeeInfo;           // Y token fee tracking (128 bits)
  // Total: ~448 bits per bin, ~3.5KB per 70-bin array
}

const initializeBinArray = async (lbPair: PublicKey, index: number) => {
  // Lazy initialization - only create when first bin in array is used
  const [binArrayPda] = PublicKey.findProgramAddressSync(
    [
      Buffer.from("bin_array"),
      lbPair.toBuffer(),
      new BN(index).toArrayLike(Buffer, "le", 8)
    ],
    DLMM_PROGRAM_ID
  );
  
  // Initialize only when needed to minimize storage costs
  return binArrayPda;
};

Performance Optimization Techniques

  • RPC Optimization
  • Compute Optimization
  • Memory Management
Minimizing network calls for better performance
const optimizedBinDataFetch = async (binRange: number[]) => {
  // Batch multiple bin queries into single RPC call
  const accounts = binRange.map(binId => getBinArrayPda(Math.floor(binId / 70)));
  const uniqueAccounts = [...new Set(accounts)];
  
  // Single RPC call for multiple bin arrays
  const binArrayData = await connection.getMultipleAccountsInfo(uniqueAccounts);
  
  // Parse and extract relevant bins
  return binArrayData.flatMap(data => 
    data ? parseBinArrayData(data).bins.filter(bin => binRange.includes(bin.id)) : []
  );
};

const cacheOptimization = new Map<string, CachedBinData>();

const getCachedBinData = async (binId: number): Promise<BinData> => {
  const cacheKey = `bin_${binId}`;
  const cached = cacheOptimization.get(cacheKey);
  
  if (cached && Date.now() - cached.timestamp < 5000) { // 5 second cache
    return cached.data;
  }
  
  const fresh = await fetchBinData(binId);
  cacheOptimization.set(cacheKey, { data: fresh, timestamp: Date.now() });
  return fresh;
};

Integration Patterns and Best Practices

Developer Integration Examples

// Complete DLMM integration example
class SarosDLMMIntegration {
  private connection: Connection;
  private dlmmProgram: Program<DLMM>;
  private binCache: Map<number, BinData> = new Map();
  
  constructor(connection: Connection) {
    this.connection = connection;
    this.dlmmProgram = createDLMMProgram(connection);
  }
  
  async executeOptimalSwap(params: SwapParams): Promise<SwapResult> {
    // 1. Fetch current bin state
    const activeBin = await this.getActiveBin(params.pair);
    
    // 2. Calculate optimal execution strategy
    const strategy = await this.calculateSwapStrategy(params, activeBin);
    
    // 3. Build and execute transaction
    const transaction = await this.buildSwapTransaction(strategy);
    const signature = await this.connection.sendTransaction(transaction);
    
    // 4. Monitor and return result
    return this.waitForConfirmation(signature);
  }
  
  private async calculateSwapStrategy(params: SwapParams, activeBin: BinData): Promise<SwapStrategy> {
    if (params.amount.lte(activeBin.liquidity)) {
      // Single bin execution
      return {
        type: 'single_bin',
        bins: [activeBin],
        expectedSlippage: new BN(0),
        estimatedGas: 85_000
      };
    } else {
      // Multi-bin execution
      const route = await this.findOptimalBinRoute(params);
      return {
        type: 'multi_bin',
        bins: route.bins,
        expectedSlippage: route.totalSlippage,
        estimatedGas: 145_000 + (route.bins.length * 15_000)
      };
    }
  }
  
  private async findOptimalBinRoute(params: SwapParams): Promise<BinRoute> {
    const availableBins = await this.getAvailableBins(params.pair, 20); // Get 20 bins
    let remainingAmount = params.amount;
    const routeBins: BinData[] = [];
    let totalSlippage = new BN(0);
    
    for (const bin of availableBins) {
      if (remainingAmount.lte(new BN(0))) break;
      
      const amountInThisBin = BN.min(remainingAmount, bin.liquidity);
      routeBins.push({ ...bin, amountToUse: amountInThisBin });
      
      // Calculate slippage for this bin
      const binSlippage = this.calculateBinSlippage(amountInThisBin, bin);
      totalSlippage = totalSlippage.add(binSlippage);
      
      remainingAmount = remainingAmount.sub(amountInThisBin);
    }
    
    return { bins: routeBins, totalSlippage };
  }
}

// Usage example
const dlmm = new SarosDLMMIntegration(connection);

const swapResult = await dlmm.executeOptimalSwap({
  pair: SOL_USDC_PAIR,
  amount: new BN('1000000'), // 1 USDC
  direction: 'buy', // Buy SOL with USDC
  maxSlippage: 0.005, // 0.5% max slippage
  deadline: Date.now() + 60000 // 1 minute deadline
});

console.log(`Swapped 1 USDC for ${swapResult.outputAmount} SOL with ${swapResult.slippage}% slippage`);

Future Enhancements and Roadmap

Planned Architecture Improvements

Adaptive Bin Sizing

Dynamic bin size adjustment based on market conditions
  • Smaller bins during low volatility for precise pricing
  • Larger bins during high volatility for gas efficiency
  • AI-driven optimization based on historical performance
  • Real-time adaptation to market microstructure

Cross-Chain Bin Architecture

Extended bin architecture for cross-chain liquidity
  • Synchronized bins across multiple blockchains
  • Cross-chain arbitrage through bin alignment
  • Unified liquidity across Solana, Ethereum, and other chains
  • Seamless user experience across ecosystems

Advanced MEV Strategies

Sophisticated MEV protection and value capture
  • Predictive MEV detection using machine learning
  • Advanced auction mechanisms for MEV redistribution
  • Integration with private mempools and flashloan protocols
  • User-customizable MEV protection levels

Institutional Features

Enterprise-grade bin management and reporting
  • Portfolio-level bin optimization across multiple pairs
  • Advanced analytics and performance attribution
  • Regulatory compliance and audit trail features
  • White-label bin architecture for institutional clients

Research and Development Focus Areas

Active Research Projects:
  • Quantum-Resistant Bin Architecture: Preparing for post-quantum cryptography
  • ML-Optimized Liquidity Distribution: AI-driven optimal bin allocation
  • Cross-Protocol Yield Optimization: Automatic yield farming across DeFi protocols
  • Zero-Knowledge Bin Proofs: Privacy-preserving liquidity provision

Ready to implement DLMM bin architecture? Start with TypeScript SDK → or Explore Rust SDK →