Skip to main content
Your trading system is profitable but can’t scale to institutional volumes. When you need to process millions of transactions per second with microsecond latency, only heavily optimized Rust can deliver the performance required.

What You’ll Achieve

  • Process 1M+ transactions per second
  • Achieve sub-microsecond latency for critical operations
  • Scale to handle billions in daily volume
  • Build systems that compete with traditional HFT firms

Why Extreme Optimization Matters

At institutional scale, every microsecond and megabyte matters. A 1ms improvement in latency can mean millions in additional profits. Rust’s zero-cost abstractions and direct hardware control make this level of optimization possible.

Performance Optimization Pipeline

Performance optimization pipeline showing caching, batch processing, and latency reduction techniques Complete optimization strategy for production systems - this is your roadmap to institutional-grade performance

Rust SDK Optimization Stages

Production Performance Characteristics

Optimization Strategies

use dlmm_rust_sdk::{
    DlmmPool, OptimizedQuote, PerformanceMetrics,
    error::DlmmError,
};
use rayon::prelude::*;
use std::{
    sync::{Arc, atomic::{AtomicU64, Ordering}},
    collections::HashMap,
    time::{Instant, Duration},
};
use tokio::sync::RwLock;

/// High-performance production-ready DLMM client
#[derive(Debug)]
pub struct ProductionDlmmClient {
    pools: Arc<RwLock<HashMap<String, Arc<DlmmPool>>>>,
    metrics: Arc<PerformanceMetrics>,
    config: ProductionConfig,
}

#[derive(Debug, Clone)]
pub struct ProductionConfig {
    pub max_concurrent_requests: usize,
    pub request_timeout: Duration,
    pub cache_ttl: Duration,
    pub enable_metrics: bool,
    pub circuit_breaker_threshold: u32,
    pub batch_size: usize,
}

#[derive(Debug)]
pub struct PerformanceMetrics {
    pub quote_latency_ns: AtomicU64,
    pub swap_latency_ns: AtomicU64,
    pub cache_hits: AtomicU64,
    pub cache_misses: AtomicU64,
    pub error_count: AtomicU64,
    pub throughput_qps: AtomicU64,
}

impl ProductionDlmmClient {
    pub fn new(config: ProductionConfig) -> Self {
        Self {
            pools: Arc::new(RwLock::new(HashMap::new())),
            metrics: Arc::new(PerformanceMetrics {
                quote_latency_ns: AtomicU64::new(0),
                swap_latency_ns: AtomicU64::new(0),
                cache_hits: AtomicU64::new(0),
                cache_misses: AtomicU64::new(0),
                error_count: AtomicU64::new(0),
                throughput_qps: AtomicU64::new(0),
            }),
            config,
        }
    }

    /// High-performance batch quote processing
    pub async fn batch_quotes(
        &self,
        requests: Vec<QuoteRequest>,
    ) -> Vec<Result<OptimizedQuote, DlmmError>> {
        let start_time = Instant::now();
        
        // Process quotes in parallel using rayon
        let results: Vec<_> = requests
            .into_par_iter()
            .map(|req| self.process_single_quote(req))
            .collect();

        // Update throughput metrics
        let elapsed_ns = start_time.elapsed().as_nanos() as u64;
        let qps = (results.len() as u64 * 1_000_000_000) / elapsed_ns;
        self.metrics.throughput_qps.store(qps, Ordering::Relaxed);

        // Convert to async results
        let mut async_results = Vec::new();
        for result in results {
            async_results.push(result.await);
        }

        async_results
    }

    /// Zero-copy optimized quote calculation
    async fn process_single_quote(
        &self,
        request: QuoteRequest,
    ) -> Result<OptimizedQuote, DlmmError> {
        let start_time = Instant::now();
        
        // Fast path: Check cache first
        if let Some(cached_quote) = self.get_cached_quote(&request).await {
            self.metrics.cache_hits.fetch_add(1, Ordering::Relaxed);
            return Ok(cached_quote);
        }
        
        self.metrics.cache_misses.fetch_add(1, Ordering::Relaxed);
        
        // Get pool reference
        let pools = self.pools.read().await;
        let pool = pools.get(&request.pool_key)
            .ok_or(DlmmError::PoolNotFound)?
            .clone();
        drop(pools); // Release lock early

        // Optimized quote calculation with SIMD
        let quote = pool.get_optimized_quote(
            request.amount_in,
            request.swap_for_y,
            request.slippage,
        ).await?;

        // Cache the result
        self.cache_quote(&request, &quote).await;

        // Update latency metrics
        let latency_ns = start_time.elapsed().as_nanos() as u64;
        self.metrics.quote_latency_ns.store(latency_ns, Ordering::Relaxed);

        Ok(quote)
    }

    /// Memory-efficient pool state updates
    pub async fn batch_update_pools(
        &self,
        pool_addresses: Vec<String>,
    ) -> Result<(), DlmmError> {
        // Use bounded channel to control memory usage
        let (tx, mut rx) = tokio::sync::mpsc::channel(self.config.batch_size);
        
        // Producer: Send update tasks
        let pools_clone = self.pools.clone();
        tokio::spawn(async move {
            for address in pool_addresses {
                if tx.send(address).await.is_err() {
                    break; // Receiver dropped
                }
            }
        });

        // Consumer: Process updates in parallel
        let mut update_tasks = Vec::new();
        while let Some(address) = rx.recv().await {
            let pools = self.pools.clone();
            let task = tokio::spawn(async move {
                if let Some(pool) = pools.read().await.get(&address).cloned() {
                    pool.update_state().await
                } else {
                    Ok(())
                }
            });
            update_tasks.push(task);
            
            // Limit concurrent updates
            if update_tasks.len() >= self.config.max_concurrent_requests {
                // Wait for some tasks to complete
                let _ = futures::future::join_all(update_tasks.split_off(
                    update_tasks.len() / 2
                )).await;
            }
        }

        // Wait for remaining tasks
        let _: Vec<_> = futures::future::join_all(update_tasks).await;
        
        Ok(())
    }

    /// Circuit breaker implementation
    pub async fn execute_with_circuit_breaker<F, T>(
        &self,
        operation: F,
    ) -> Result<T, DlmmError>
    where
        F: std::future::Future<Output = Result<T, DlmmError>>,
    {
        let error_count = self.metrics.error_count.load(Ordering::Relaxed);
        
        // Check circuit breaker
        if error_count > self.config.circuit_breaker_threshold as u64 {
            return Err(DlmmError::CircuitBreakerOpen);
        }

        match operation.await {
            Ok(result) => {
                // Reset error count on success
                self.metrics.error_count.store(0, Ordering::Relaxed);
                Ok(result)
            }
            Err(err) => {
                // Increment error count
                self.metrics.error_count.fetch_add(1, Ordering::Relaxed);
                Err(err)
            }
        }
    }

    /// Lock-free cache implementation
    async fn get_cached_quote(&self, request: &QuoteRequest) -> Option<OptimizedQuote> {
        // Implementation would use a lock-free cache like dashmap
        // This is a simplified version
        None // Placeholder
    }

    async fn cache_quote(&self, request: &QuoteRequest, quote: &OptimizedQuote) {
        // Cache implementation with TTL
        // Would use background cleanup tasks
    }

    /// Health monitoring and metrics collection
    pub fn get_health_status(&self) -> HealthStatus {
        let quote_latency = self.metrics.quote_latency_ns.load(Ordering::Relaxed);
        let error_count = self.metrics.error_count.load(Ordering::Relaxed);
        let cache_hit_rate = {
            let hits = self.metrics.cache_hits.load(Ordering::Relaxed);
            let misses = self.metrics.cache_misses.load(Ordering::Relaxed);
            if hits + misses > 0 {
                (hits as f64) / ((hits + misses) as f64) * 100.0
            } else {
                0.0
            }
        };

        HealthStatus {
            is_healthy: quote_latency < 1_000_000 && error_count < 10, // 1ms, 10 errors
            avg_quote_latency_ns: quote_latency,
            error_rate: error_count,
            cache_hit_rate_percent: cache_hit_rate,
            throughput_qps: self.metrics.throughput_qps.load(Ordering::Relaxed),
        }
    }
}

#[derive(Debug, Clone)]
pub struct QuoteRequest {
    pub pool_key: String,
    pub amount_in: u64,
    pub swap_for_y: bool,
    pub slippage: f64,
}

#[derive(Debug)]
pub struct HealthStatus {
    pub is_healthy: bool,
    pub avg_quote_latency_ns: u64,
    pub error_rate: u64,
    pub cache_hit_rate_percent: f64,
    pub throughput_qps: u64,
}

/// SIMD-optimized math operations
mod simd_math {
    use std::arch::x86_64::*;
    
    /// Vectorized price calculations using AVX2
    #[target_feature(enable = "avx2")]
    pub unsafe fn calculate_bin_prices_simd(
        base_prices: &[f64],
        multipliers: &[f64],
        results: &mut [f64],
    ) {
        assert_eq!(base_prices.len(), multipliers.len());
        assert_eq!(base_prices.len(), results.len());
        
        let chunks = base_prices.len() / 4; // Process 4 f64s at a time
        
        for i in 0..chunks {
            let idx = i * 4;
            
            // Load 4 base prices and multipliers
            let base = _mm256_loadu_pd(base_prices.as_ptr().add(idx));
            let mult = _mm256_loadu_pd(multipliers.as_ptr().add(idx));
            
            // Multiply and store result
            let result = _mm256_mul_pd(base, mult);
            _mm256_storeu_pd(results.as_mut_ptr().add(idx), result);
        }
        
        // Handle remaining elements
        for i in (chunks * 4)..base_prices.len() {
            results[i] = base_prices[i] * multipliers[i];
        }
    }
}

#[tokio::main]
async fn main() -> Result<(), Box<dyn std::error::Error>> {
    // Production configuration
    let config = ProductionConfig {
        max_concurrent_requests: 1000,
        request_timeout: Duration::from_millis(100),
        cache_ttl: Duration::from_secs(30),
        enable_metrics: true,
        circuit_breaker_threshold: 50,
        batch_size: 100,
    };
    
    let client = ProductionDlmmClient::new(config);
    
    // Example: Batch process quotes
    let requests = vec![
        QuoteRequest {
            pool_key: "usdc-sol".to_string(),
            amount_in: 1_000_000,
            swap_for_y: true,
            slippage: 0.005,
        },
        // ... more requests
    ];
    
    let quotes = client.batch_quotes(requests).await;
    println!("Processed {} quotes", quotes.len());
    
    // Monitor health
    let health = client.get_health_status();
    println!("Health status: {:?}", health);
    
    Ok(())
}

Production Optimizations

Memory Management

  • Zero-Copy Parsing: Avoid unnecessary memory allocations
  • Object Pooling: Reuse expensive objects like HTTP clients
  • Memory Mapping: Use memory-mapped files for large datasets
  • Stack Allocation: Prefer stack over heap when possible

CPU Optimization

// Branch prediction optimization
#[inline(always)]
fn optimized_bin_traversal(bins: &[Bin], amount: u64) -> u64 {
    let mut remaining = amount;
    let mut output = 0;
    
    // Unroll loop for better performance
    let chunks = bins.len() / 4;
    for i in 0..chunks {
        let base = i * 4;
        
        // Process 4 bins at once
        if likely(remaining > 0) {
            output += bins[base].consume(&mut remaining);
        }
        if likely(remaining > 0) {
            output += bins[base + 1].consume(&mut remaining);
        }
        if likely(remaining > 0) {
            output += bins[base + 2].consume(&mut remaining);
        }
        if likely(remaining > 0) {
            output += bins[base + 3].consume(&mut remaining);
        }
    }
    
    output
}

Network Optimization

  • Connection Pooling: Reuse HTTP connections
  • Request Batching: Combine multiple requests
  • Compression: Enable gzip/brotli compression
  • Keep-Alive: Maintain persistent connections

Monitoring and Observability

use tracing::{info, warn, error, instrument};

#[instrument(skip(self), fields(pool_key = %request.pool_key))]
async fn monitored_quote(&self, request: QuoteRequest) -> Result<OptimizedQuote, DlmmError> {
    let start = Instant::now();
    
    match self.process_single_quote(request).await {
        Ok(quote) => {
            let latency = start.elapsed();
            info!(latency_ms = latency.as_millis(), "Quote successful");
            Ok(quote)
        }
        Err(e) => {
            error!(error = %e, "Quote failed");
            Err(e)
        }
    }
}

Performance Targets

  • Quote Latency: < 100μs (microseconds)
  • Throughput: > 10,000 quotes/second
  • Memory Usage: < 1KB per active pool
  • Cache Hit Rate: > 95%
  • Error Rate: < 0.1%
  • CPU Usage: < 80% under peak load